
PARALLEL COMPUTING OF METAL FORMING SIMULATION IN

QFORM SOFTWARE

Dmitry Gerasimov*, Arthur Gartvig

QuantorForm Ltd., Moscow, Russia

*Corresponding author: gerasimov@qform3d.com

Abstract

In this study, the effectiveness of parallelization of data and tasks implemented in QForm

software is investigated. The dependence of the number of simultaneously working logical processors or

cores of a multi-core CPU on the solving time of metal forming simulation is shown. The simulation

processes are parallelized in QForm software by means of Intel® Math Kernel Library, so the principle of

parallelization is not described in this article. The aim was to show how the existing solution could be

effectively used for simulation of metal forming processes and which solving processes can be

parallelized.

Key words: numerical modeling, metal forming, QForm, parallelization of data and tasks

1. INTRODUCTION

Each year the demands on numerical simulation speed and accuracy increase. When it comes to

finite element method (FE) the finer FE-mesh is the more accurate simulation results are and the longer

numerical simulation takes.

The central processor unit (CPU) parameters primarily determine the speed of numerical

simulation. Since multi-core CPUs are used in personal computers, the developers of simulation software

face a problem of how to effectively parallelize a calculation process between cores (Schauer, 2008) or

between logical processors (in the case of hyper-threading) (Marr et al., 2002) to fully utilize the

capabilities of the CPU.

There are a number of researches related to investigation of parallelization algorithms at FEM

simulation (Cârstea & Cârstea, 2008; Hoole, 1990; Wu et al., 2011). The results of experiments how the

number of used cores or processors influences on solving time are shown in some researches (Butrylo et

al., 2004; Meyer et al., 2012). For example, it is shown in (Choporov, 2013) that speedup ratio by

simulation with 4 logical processors (2 physical cores + 2 virtual cores) in comparison with one logical

processor equals about 1,6. Computer with following parameters was used in this experiment: Intel Core

i3-380 (2.53 GHz) CPU, 3 GB RAM, openSUSE 12.2 operating system (compiler gcc 4.7), openMP

library for parallelization management.

This paper describes how parallel processing by means of Intel® Math Kernel Library is used at

simulation in QForm software (Biba & Stebunov, 2002) for numerical simulation of metal forming

processes.

2. PARALLEL COMPUTING IN QFORM SOFTWARE

Two processes are launched after the start of a simulation in QForm software: QSolver.exe and

QFsolvhost.exe (figure 1).

Fig. 1. Parallelized and incompletely parallelized processes in QForm software

The process QFsolvhost.exe solves systems of equations and it uses all computational capabilities

of a system and parallelizes a simulation by means of Intel® Math Kernel Library.

The process QSolver.exe performs many necessary tasks such as: FE-mesh generation,

determination of contacts between deformable shape and tools, recording of simulation results to the hard

disk, determination of necessary simulation step size and other tasks. Some tasks performed with

QSolver.exe are also parallelized, but the effect of this parallelization is not significant in comparison to

the processes of QFsolvhost.exe.

3. EXPERIMENT

The computer used in the experiment had following parameters: processor Intel ® Core ™ i7-

5960X CPU @ 3.00GHz (8 cores) with cache L1 = 512 KB, cache L2 = 2 MB, cache L3 = 20 MB, RAM

64 GB, operation system Windows 10 Pro x64.
To estimate how effectively the calculations are parallelized in QForm software, several simple

three dimensional simulations of cylinder upsetting in flat dies were performed. To minimize the effect of

some tasks using only one logical processor (QSolver.exe), the simulation was performed without

influence of remeshing, friction and thermal problem.

Four cases with different mesh densities of the workpiece were investigated in this experiment:

with finite element sizes of 20 mm, 15 mm, 10 mm and 7 mm. The solving time of only one simulation

record was measured in the experiment: the height change from 305 mm to 300 mm (figure 2).

Fig. 2. Scheme of upsetting (left) and finite element mesh with element size of 20 mm (right)

Hyper-threading was activated in the first part of the experiment so the simulation process was

parallelized in 16 logical processors with two logical processors for each core. By means of the command

«set affinity» in task manager of Windows 10 operating system, a different number of logical processors

can be activated for the process QForm.exe. It was investigated how the number of simultaneously

activated logical processors (1, 4 and 16) influenced the simulation time. Time measured for all cases is

shown in table 1.

Table 1. Solving time by using of different number of logical processors. Hyper-threading: on.

Size of

element,

mm

Number

of FE-

nodes

Number of

elements

Solving time by using of

different number of

logical processors (LP),

sec

Speedup

ratio for

4 LP

t1 LP/t4 LP

Speedup

ratio for

16 LP

t1 LP/t16 LP
t1 LP t4 LP t16 LP

20 9.430 50.500 12,4 6,1 2,6 2,0 4,8

15 21.800 120.300 57 27,1 9,6 2,1 5,9

10 68.700 396.100 499 221 73 2,3 6,8

7 194.500 1.146.000 4082 1722 509 2,4 8,0

Speedup ratio is an important index in measuring the performance of the parallel computing. In

this paper speedup ratio for n logical processors is defined as the ratio of solving time with one logical

processor to solving time with n logical processors. The finer FE-mesh the more effectively parallel

computing is performed in QForm.

Table 2. Solving time by using of different number of cores. Hyper-threading: off.

Size of

element,

mm

Number

of FE-

nodes

Number of

elements

Solving time by using of

different number of

cores, sec

Speedup

ratio for

4 cores

t1 core/t4 cores

Speedup

ratio for

8 cores

t1 core/t8 cores t1 core t4 cores t8 cores

20 9.430 50.500 12,8 3,8 2,6 3,4 4,9

15 21.800 120.300 56,7 16 10,1 3,5 5,6

10 68.700 396.100 479 133 74 3,6 6,5

7 194.500 1.146.000 3658 1002 539 3,7 6,8

Additional numerical simulations with switched off hyper-threading were performed to estimate

the benefit of hyper-threading. The results are shown in table 2. When simultaneously working of all

cores the simulations with activated hyper-threading were 1-6% faster depending on FE-mesh density in

the context of this experiment.

The larger the number of remeshings and simulation steps the more processes are not parallelized

during modelling (figure 1). At the same time the effect of parallelization depends on FE-mesh density,

how it was shown in the examples above. To estimate and show the speedup ratio for whole simulation

process the solving time of fork forging simulation with different simulation parameters (figure 3) was

investigated.

Fig. 3. Results of bulk forging simulation. Mesh adaptation factor = 1

Solving time of whole hot forging simulation process with different number of FE-nodes and

simulation steps is shown in table 3.

Table 3. Solving time of hot forging simulation by using of different number of cores.

Hyper-threading: off.

Adaptation

factor, mm

Number

of FE-

nodes

Number

of

elements

Number of

simulation

steps

Solving time by using of

different number of

cores, sec

Speedup

ratio for

8 cores

t1 core/t8 cores t1 core t8 cores

1 12.800 58.000 168 2734 1113 2,5

2 56.000 267.000 250 33.012 11.546 2,9

3 126.000 615.000 371 179.625 51.325 3,5

In view of the fact that not all processes can be parallelized during simulation and that often it is

necessary to investigate and to simulate several cases of one metal forming process (different die or

workpiece geometries, different initial parameters of deformed material, different friction conditions etc.)

it makes sense to use the multitask possibility (simulation of several technological processes or cases

simultaneously). Multitask feature can significantly increase the simulation efficiency. How the solving

time depends on the number of simultaneously started identical simulations is shown in table 4. The

simulation process showed in figure 3 with mesh adaptation factor equaled 1 (12.800 FE-nodes) was

investigated in this experiment.

Table 4. Solving time when using of multitask feature. 8-core processor was used for simulations.

Number of simultaneously

started simulations on one

computer

Simulation

time, min

Specific simulation

time of one simulation

process, min

1 19 19

2 25 12,5

4 34 8,5

8 65 8,1

16 118 7,4

4. CONCLUSION

The effectiveness of parallelization during FE simulation in QForm software depends generally

on the FE-mesh density. Parallelization is more effective in simulations with a higher number of FE-

nodes. Total number of non-parallelized or incompletely parallelized processes depends on the number of

remeshings and simulation steps. Maximum measured speedup ratio equals 6,8 for 8-Core processor at

full load with switched off hyper-threading. Calculation speed can be additionally increased by means of

hyper-threading: maximum measured speedup ratio equals 8 for 8-Core processor at full load.

REFERENCES

Biba, N., Stebunov, S., 2002, 3D Finite Element Simulation of Material Flow, Metallurgia,

Volume 69, No. 2, pp. FT8-FT10

Schauer, B., 2008, Multicore Processors – A Necessity, Proquest Discovery Guides, September,

pp. 1-14.

Marr, D.T., Binns, F., Hill, D.L., Hinton, G., Koufaty, D.A., Miller, J.A., Upton, M., 2002,

Hyper-Threading Technology Architecture and Microarchitecture, Intel Technology Journal, Volume 6,

Issue 1.

Cârstea, T., Cârstea, D.P., 2008, Parallel computing in finite element applications, Proceedings of

the 10th WSEAS International Conference on MACMESE'08, pp. 180-185

Hoole, S.R.H., Parallelism in Interactive Operations in Finite-Element Simulation, 1990, IEEE

Transactions on magnetics, Volume 26, No. 4

Meyer, M., Sallwey, J., Blankenburg, R., Graeber, P.-W., 2012, Implementing Parallelism into an

Unsaturated Soil Zone Simulation Model, Boundary Field Problems and Computer Simulation, pp. 25-29

Choporov, S., 2013, Parallel Computing Technologies in the Finite Element Method, Third

International Conference "High Performance Computing" HPC-UA, pp. 85-91

Butrylo, B., Musy, F., Nicolas, L., Perrussel, R., Scorretti, R., Vollaire, C., 2004, A survey of

parallel solvers for the finite element method in computational electromagnetics, COMPEL: The

International Journal for Computation and Mathematics in Electrical and Electronic Engineering,

Emerald, 23 (2), pp. 531-546.

Wu, X., Duan, B., Taylor, V., 2011, Parallel Finite Element Earthquake Rupture Simulations on

Quad- and Hex-core Cray XT Systems, the 53rd Cray User Group Conference (CUG2011)

